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Introduction

« Large penetration of HVdc expected
— Regional interconnectivity for reliability/resilience

— Transfer generation to load centers
— Offshore grid

* Drivers
— Reduced energy storage needs
— Reliability/resilience needs — 2025, scanano

____ 2036, Scenario 1
added lines

2050, Scenario 2
added lines
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MTdc Architecture
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Future Scenario: 10-Terminal HVdc System in EI/WI

Scenario

* Asymmetric monopole-bipole VSC MTdc system
(10-terminals)

e EI-WI system (~100,000 buses)

—— 2026, Scenario

2038, St i
added lin:

Use cases of interest _ e
* Different dc fault types (line-line, line-ground, seenario-0: Radal T (green)

HVDC station

line-neutral) S |
* Different dc fault locations (bipole, asymmetric A I e O E}E‘;“Jvii

3 Salt Lake, UT p25 2465 .
ratings

monopoles, junction) T T e | e |

« Different ac fault types (balanced, unbalanced) B Wil S W
 Different ac fault locations (WI, El, boundary) T

8 Fort Dodge, 1A p4s 2071
° Chicago, IL p8o 4468
lo Detroit, MI plo3 4468
&OAK RIDGE Project Team: ORNL, NREL, PNNL Scenario-0: Power rating of each station
National Laboratory

El: Eastern Interconnection; WI: Western Interconnection
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Future Scenario: EMT Simulation of 10-Terminal HVdc System in EI/WI

Scenario-1: Meshed MTdc

Scenario-2: dc Grid

—— 2026, Scenario 0

2036, Scenario 1
added lines

2050, Scenario 2
added lines

New scenarios of HVdc development

Lower power ratings
New multi-terminal dc architecture proposed*

*S. S. Jaldanki, S. Debnath, J. Zhang, P. Brown and J. Novacheck, "Mixed Monopole and Bipole MTdc
Architecture," 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 2023,
pp. 822-829

EMT models used

e Scenario-0 analyzed with mixed symmetric bipole and asymmetric monopoles

 EMT High-fidelity models

S_QOAK RIDGE

National Laboratory

MTdc — Multi-Terminal Direct Current



EMT-TS: 10-Terminal HVdc System + EI/WI Models e

Impact of unbalanced ac fault on station and larger interconnection’s frequency

4.8 53 58 6.3 6.8 73 7.8 -2500
— V_LA — VLV V_Salt = 800, — P_LA — P LV P_Salt
W_Shoshoni V_Cheyyenne V_Denver &g 700 P_Shoshoni —— P_Cheyyenne —— P_Denver
H Gm ' . - . -
Balanced ac fault affecting voltages across multiple stations . " 50071 ] affecting powers across multiple stationgCeeding line limits
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—— Pdc_N_Che Pdc_N_Den Pdc_N_Grand

Pdc_N_Fort Pdc_N_Chi —— Pdc_N_Det

Unbalanced dc fault response (changed power transfer)
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Example Scenario — Another Study

* Challenges: Scalability in analyzing a large
number of dc stations (e.g., scenario-1)

— Slow simulation with high-fidelity models

« Solution: Use of numerical simulation
and HPC algorithms for scalable EMT

— 2026, Scenario 0

1 1 2036, Scenario 1
simuiation or dcC — addedlnes
2050, Scenario 2
added lines

Scenario-1: Meshed MTdc (green + orange) [NREL]

Total Runtime Comparison for 1e5 timesteps, 34 MMC Systems

. Intel Core i7-9850H CPU @ 2.60GHz MMC System Arm Currents

175

z goe (IR Enhanced capability to simulate
310 e A A A . - .
£ RN R R AR R R large dc architectures in United
: B O

50 . o8 ‘:‘5‘1:“;; ‘1;;‘;‘;:  ; it ;“: s ‘ i A ‘1:“‘:“11: Statesl

High-fidelity models and HPC-based EMT
simulation of large-scale dc substations [ORNL]

%0AK RIDGE 6x speed-up observed with multi-core usage enables use of more MMC
National Laboratory substations - of the order of 34 (with greater than 2x scalability)




Lessons Learned and Challenges

e Lessons learned

— Interim value proposition of the large-scale simulation of MTdc architectures
identified using EMT-TS hybrid simulation

— Will continue to work on improving the scalability and speed of EMT simulation of
MTdc architectures through simulation capabilities like RE_INTEGRATE

* “Next set of Challenges” evaluated using EMT
— Scalability

— Interoperability
— Extra High-Voltage dc Systems (Design study)
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Conclusions

e Different HVdc architectures evaluated in EMT simulation testbeds
— Protection studies
— Large ac-dc system studies (reliability studies)

e EMT-TS hybrid simulation
— Design validation and reliability studies
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Another Future Scenario: Extra High-
Voltage dc Systems

- Balzance power acro= multiple seres
connected VEls

- Stabilize woltages and powers across
multiple V5Cs

15

MTdc system over long
distances (El with 4-terminal
MTdc system; 24 MMCs)

Time scale Platform
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Optimal MTdc grid dispatch |
; ; 15
1| E‘ L | minutes RetDs
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National Laboratory Project Team: ORNL, PNNL, NREL




MTdc Architectures
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Interoperability: EMT Application
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Interoperability

 Modeling capabilities — evaluation of interoperability or multi-vendor systems*

e Interoperability of the systems with multiple vendors and scalability of
controls - this is an extremely challenging problem!*

e Goal: Enable multi-vendor MTdc systems
— ldentify key functional requirements and technical specifications

e Approach:

— MTdc simulation setup at ORNL to evaluate multi-vendor systems to integrate wind (that
enables plug-and-play)

— Enable multiple (e.g., Siemens Energy and Hitachi Energy) HVdc systems in the setup
using hierarchical control systems

— Evaluate capability to integrate in different utilities and system operators

e Target: Improve reliability and operability of multi-vendor MTdc systems through
simulation setup

*|dentified through a series of workshops and multiple engagements
&OA RIDGE [1] US DOE, “High-Voltage Direct Current (HVDC) COst REduction (CORE) Initiative”, 2023.
National Laboratory [2] US DOE, “HVdc Roadmap”, 2024 (expected).




Interoperability

One potential technical specification example
* Hierarchical control system to enable multi-vendor MTdc systems

MTdc controller operation mode; status
signal and measured electrical quantities

Operator (~ mins) « from all converter stations, dc breakers,
Active power dispatch, Active power dispatch, wind farms, and choppers
modes of operation modes of operation (slowest sampled)

LAVDYE Comireller (=1 5) Status signal and measured electrical quantities from all

Emergency operations: Re- Optimization of control parameters “Converter stations, dc breakers, wind farms, and choppers
scheduled power flow in slower| | (dc voltage droop, frequency (slower sampled)
timescale (in seconds) droop, dc voltage set points . i
Voltage schedules P age set points) —> Re-schedules to wind power plants
(or reactive) l Droops, re-schedules,_updated
modes of operation Dﬁia from connected dc brefakers, connected
Station Controller (SC) (~100 ms) «— e Conn(ﬁfixg?ed;rm (oracrid)
Utility (~ mins) —» Monitoring (protection), control scheme selection, ) .
fast timescale re-dispatch, oscillations control Re-dispach to connected wind power plants
Voltage schedules (or | Dispatch commands
reactive) v Measured ac voltage, dc
Converter Controller (CC) (~1 ms) < voltage, arm currents,
| sub-module voltages etc.
ac side control dc side control MMC intemal
l l control
-Droop (v, f) -dc-grid-forming (droop) -Circulating current
-Grid following (PLL) -dc-grid-following -Intemal energy
-Grid forming (w or (active power control) -Modulation
w/o PLL) -dc fault handling -Cell balancing

*|dentified through a series of workshops and multiple engagements
*OAK RIDGE [1] US DOE, “High-Voltage Direct Current (HVDC) COst REduction (CORE) Initiative”, 2023.
National Laboratory [2] US DOE, “HVdc Roadmap”, 2024 (expected).




Extra High-Voltage dc Systems: Architecture
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