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Overview

• Why?

– Let us look at a real-world example from a different field

– Etched --- a company founded just two years ago that designs chips for Transformer 
inference which are 20x faster than NVIDIA H100 GPUs.

– "Sohu is an order of magnitude faster and cheaper than even NVIDIA's next-
generation Blackwell GPUs“

– And yes, Etched, as the name suggests is an ASIC that implements Transformers at 
the hardware level – “The world’s first transformer ASIC”
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• Hardware implementation of the EMT simulation platform

Overview

 Hierarchical structure of the components in the system
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• Hardware implementation of the EMT simulation platform

 Overall hardware architecture

• Dedicated hardware 

modules for network, 

generator, loads and 

control elements

• High speed buses for data 

transfer between network 

solver and other elements.

• The Matrix-vector 

multiplier is the key 

component in the 

architecture.

Hardware Accelerator Design



66

Page 6

• Design of the Processing Element(PE)
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 The Processing Element(PE) is responsible for dense matrix-vector multiplication of a small tile

(e.g. 4x4).

 We utilize multiple multipliers to conduct the multiplications simultaneously.

 Results in one row will be summed up through a set of adder tree.

A PE architecture that conduct a 4x4 dense mat-vec (y=Ax)

• Hardware cost:  

16 multipliers

12 adders

• Delays: 3 cycles

Hardware Accelerator Design
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• Adaptive matrix multiplier with configurable adder tree
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• Each PE is responsible for n*n(e.g. 4x4) 

dense matvec and produces a vector of 

length n

• ⨁ stands for a configurable unit which act 

as numerical adder or concatenator
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Configurable adder tree architecture Configurable adder unit

Hardware Accelerator Design
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• Mapping the matrix to the architecture

𝑏1

𝑏2

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

⋅

 Examples of 2 mat-vec of different shapes mapped to the same architecture
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Hardware Accelerator Design
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• Mapping the matrix to the architecture

 Arrange the PEs to form an array

• Assume the total number of PEs is 2𝑘(k is the number of levels of the tree).

• The possible shape of PE array could be (𝑛 ⋅ 2𝑟, n ⋅ 2𝑐), where r+c=k, n is the PE tile size. 

 Shaping strategy of the PE array
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• Case 1 (sufficient amount of 

PEs)

Shape the PE array so that it 

covers the whole matrix.

• Case 2 (insufficient amount of PEs)

Shape the PE array so that it covers 

part of the columns of the matrix. The

whole matrix is covered in multiple 

times.

Hardware Accelerator Design
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• Circuit synthesis results

• Synthesis tool: Synopsys Design Compiler

• Target library:  Nangate open cell library (45nm)

• Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (enough to contain 69-bus system)

 Power report 

 Area report 

Power consumption < 0.08 w

Total area < 0.8 𝑚𝑚2

Circuit Synthesis Results
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• Circuit performance evaluation

• Based on synthesis result on timing, we can estimate the time needed for the accelerator to 

solve the 69-bus system

• Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (sufficient to process the 

69-bus system)

 Timing report 

Running frequency > 500Mhz

 Runtime estimation

• Delay for each mat-vec: log 8 + log 32 + 4 = 12 cycles.

• To solve the linear system we need 4 mat-vec, thus total delay: 4*12=48 cycles. 

• Assume running frequency 500 MHz, total runtime would be 48*2 ns = 96 ns.

• Compared to previous software approach (~10 us), hardware accelerator gains around 104 

times speedup for the 69-bus system.

Circuit Synthesis Results
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• Hardware implementation of the EMT simulation platform

Component Design

 Hierarchical structure of the components in the system
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• Hardware implementation of the variable frequency mean function 

PLL Design -- Variable Frequency Mean Function 

 The variable frequency mean function calculate the mean value of the input signal over a 

single cycle. 

ത𝑉(𝑡) =
1

𝑇
න
𝑡−𝑇

𝑡

𝑉 𝑡 ⋅ 𝑑𝑡
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• Hardware implementation of the variable frequency mean function 

PLL Design -- Variable Frequency Mean Function

 The running mean form can be implemented very efficiently with minimum hardware 

requirement.

• 2 multiplier
• 1 adder
• 1 register
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• Hardware implementation of the low-pass filter

PLL Design -- Low-Pass Filter

 The low-pass filter can remove high-frequency noises thus makes the output frequency 

smoother and more robust.

 The general form of the low-pass filter can be expressed as:

𝑓′′ + 2𝜉𝜔𝑛 ⋅ 𝑓
′ + 𝜔𝑛 ⋅ 𝑓 = 𝑓 𝑡

 To facilitate hardware implementation, we rewrite the equation as:

𝑓 =
𝑓(𝑡)

2𝜋
−
𝑓′′

𝜔𝑛
2 −

2𝜉𝑓′

𝜔𝑛
= 𝐴 ⋅ 𝑓(𝑡) − 𝐵 ⋅ 𝑓′ − 𝐶 ⋅ 𝑓′′

Now we only need to calculate the derivative and second-order derivative of f, which can 

be easily obtained by the difference between current value and history values.
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• Hardware implementation of the low-pass filter

PLL Design -- Low-Pass Filter

 The design that maximize hardware reuse
Hardware count

• Multiplier: 1

• Adder: 1

• Differentiator: 1

• Adder: 0 (will use 

available adders)

• Shifter: 1

• Register: 2

Timing

• 4 Cycles

• 1 cycle has delay of 1 

multiplier

Another option of the same circuit 

performs CC3 and CC4 in one 

cycle.

• Increases hardware usage

• Decreases #CCs
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Conclusions

• ASIC for EMT research is complementary to existing EMT 
research.

• The research in this space is currently in early stage but has 
tremendous potential for accelerating EMT studies, drawing 
inspiration from success stories in other fields.
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Questions?


