

Exploring Application-Specific Integrated Circuit (ASIC) for EMT Simulation

Weiping Shi, Texas A&M University (wshi@ece.tamu.edu)

Zhenrui Wang, Texas A&M University (jerrywang95@tamu.edu)

Karthikeyan Balasubramaniam, Argonne National Laboratory (kbalasubramaniam@anl.gov)

This work is supported by U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), Project #38455.

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Overview
- Hardware Accelerator Design
- Circuit Synthesis Results
- Component Design
- Conclusions

Overview

- Why?
 - Let us look at a real-world example from a different field
 - Etched --- a company founded just two years ago that designs chips for Transformer inference which are 20x faster than NVIDIA H100 GPUs.
 - "Sohu is an order of magnitude faster and cheaper than even NVIDIA's nextgeneration Blackwell GPUs"
 - And yes, Etched, as the name suggests is an ASIC that implements Transformers at the hardware level – "The world's first transformer ASIC"

Overview

Hardware implementation of the EMT simulation platform

> Hierarchical structure of the components in the system

- Hardware implementation of the EMT simulation platform
 - Overall hardware architecture

- Dedicated hardware modules for network, generator, loads and control elements
- High speed buses for data transfer between network solver and other elements.
- The Matrix-vector multiplier is the key component in the architecture.

- Design of the Processing Element(PE)
 - The Processing Element(PE) is responsible for dense matrix-vector multiplication of a small tile (e.g. 4x4).
 - > We utilize multiple multipliers to conduct the multiplications simultaneously.
 - Results in one row will be summed up through a set of adder tree.

- Hardware cost: 16 multipliers 12 adders
- Delays: 3 cycles

A PE architecture that conduct a 4x4 dense mat-vec (y=Ax)

Adaptive matrix multiplier with configurable adder tree

Configurable adder tree architecture

Configurable adder unit

- Mapping the matrix to the architecture
 - > Examples of 2 mat-vec of different shapes mapped to the same architecture

Stands for concatenator

Stands for adder

- Mapping the matrix to the architecture
 - Arrange the PEs to form an array
 - Assume the total number of PEs is 2^k (k is the number of levels of the tree).
 - The possible shape of PE array could be $(n \cdot 2^r, n \cdot 2^c)$, where r+c=k, n is the PE tile size.
 - Shaping strategy of the PE array
 - **Case 1** (sufficient amount of PEs)

Shape the PE array so that it covers the whole matrix.

• **Case 2** (insufficient amount of PEs) Shape the PE array so that it covers part of the columns of the matrix. The whole matrix is covered in multiple

Circuit Synthesis Results

• Circuit synthesis results

- Synthesis tool: Synopsys Design Compiler
- Target library: Nangate open cell library (45nm)
- Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (enough to contain 69-bus system)

Power report

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)
io_pad	0.0000	0.0000	0.0000	0.0000	(0.00%)
memory	0.0000	0.0000	0.0000	0.0000	Ć	0.00%)
black_box	0.0000	0.0000	0.0000	0.0000	Ċ	0.00%)
clock network	2.2662e+04	0.0000	0.0000	2.2662e+04	Ċ	30.58%)
register	5.8182e+03	1.6141e+03	3.3552e+06	1.0788e+04	Ċ	14.56%)
sequential	0.0000	0.0000	0.0000	0.0000	è	0.00%)
combinational	1.7179e+04	1.1350e+04	1.2117e+07	4.0648e+04	Ċ	54.86%)
Total	4.5660e+04 uW	1.2964e+04 uW	1.5472e+07 nW	7.4098e+04 (uW	

Power consumption < 0.08 w

> Area report

Combinational area:	542148	.701792		
Buf/Inv area:	81716			
Noncombinational area:	194482			
Macro/Black Box area:	0	.000000		
Net Interconnect area:	undefined	(Wire load h	las zero	net area)
Total cell area:	736630	.870737		

Total area < 0.8 mm^2

Circuit Synthesis Results

- Circuit performance evaluation
 - Based on synthesis result on timing, we can estimate the time needed for the accelerator to solve the 69-bus system
 - Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (sufficient to process the 69-bus system)

Timing report

clock clk (rise edge) clock network delay (ideal) tree_genblk1_8adder_cater_out_reg_0_/CK library setup time data required time	10.00 0.00 0.00 -0.04	10.00 10.00 10.00 r 9.96 9.96	
data required time data arrival time slack (MET)		9.96 -1.28 8.69	Running frequency > 500Mhz

Runtime estimation

- Delay for each mat-vec: $\log 8 + \log 32 + 4 = 12$ cycles.
- To solve the linear system we need 4 mat-vec, thus total delay: 4*12=48 cycles.
- Assume running frequency 500 MHz, total runtime would be 48*2 ns = 96 ns.
- Compared to previous software approach (~10 us), hardware accelerator gains around 104 times speedup for the 69-bus system.

Component Design

Hardware implementation of the EMT simulation platform

> Hierarchical structure of the components in the system

PLL Design -- Variable Frequency Mean Function

• Hardware implementation of the variable frequency mean function

The variable frequency mean function calculate the mean value of the input signal over a single cycle.

$$\bar{V}(t) = \frac{1}{T} \int_{t-T}^{t} V(t) \cdot dt$$

PLL Design -- Variable Frequency Mean Function

- Hardware implementation of the variable frequency mean function
 - The running mean form can be implemented very efficiently with minimum hardware requirement.

14

PLL Design -- Low-Pass Filter

- Hardware implementation of the low-pass filter
 - The low-pass filter can remove high-frequency noises thus makes the output frequency smoother and more robust.
 - > The general form of the low-pass filter can be expressed as:

 $f'' + 2\xi\omega_n \cdot f' + \omega_n \cdot f = f(t)$

> To facilitate hardware implementation, we rewrite the equation as:

$$f = \frac{f(t)}{2\pi} - \frac{f''}{\omega_n^2} - \frac{2\xi f'}{\omega_n} = A \cdot f(t) - B \cdot f' - C \cdot f''$$

Now we only need to calculate the derivative and second-order derivative of f, which can be easily obtained by the difference between current value and history values.

PLL Design -- Low-Pass Filter

- Hardware implementation of the low-pass filter
 - > The design that maximize hardware reuse

Hardware count

- Multiplier: 1
- Adder: 1
- Differentiator: 1
 - Adder: 0 (will use available adders)
 - Shifter: 1
 - Register: 2

Timing

- 4 Cycles
- 1 cycle has delay of 1 multiplier

Another option of the same circuit performs CC3 and CC4 in one cycle.

- Increases hardware usage
- Decreases #CCs

Conclusions

- ASIC for EMT research is complementary to existing EMT research.
- The research in this space is currently in early stage but has tremendous potential for accelerating EMT studies, drawing inspiration from success stories in other fields.

Questions?

