
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Exploring Application-Specific Integrated
Circuit (ASIC) for EMT Simulation

Weiping Shi, Texas A&M University
(wshi@ece.tamu.edu)

Zhenrui Wang, Texas A&M University
(jerrywang95@tamu.edu)

Karthikeyan Balasubramaniam,
Argonne National Laboratory
(kbalasubramaniam@anl.gov)

This work is supported by U.S.
Department of Energy (DOE)
Solar Energy Technologies
Office (SETO), Project #38455.

2

Outline

• Overview

• Hardware Accelerator Design

• Circuit Synthesis Results

• Component Design

• Conclusions

3

Overview

• Why?

– Let us look at a real-world example from a different field

– Etched --- a company founded just two years ago that designs chips for Transformer
inference which are 20x faster than NVIDIA H100 GPUs.

– "Sohu is an order of magnitude faster and cheaper than even NVIDIA's next-
generation Blackwell GPUs“

– And yes, Etched, as the name suggests is an ASIC that implements Transformers at
the hardware level – “The world’s first transformer ASIC”

44

Page 4

• Hardware implementation of the EMT simulation platform

Overview

 Hierarchical structure of the components in the system

EMTP TOP

Load Network Generator
Control

Elements

PIDPLL

Frequency
mean

Low-pass

filter

Park

Transformation

CORDIC

Ele&Mech
Solver

ODE

solver

3-phase

Inverter

Algebraic

functions

Network

Solver

Matrix

multiplier
Task

scheduler

Algebraic

functions

History term
update

Algebraic

functions

Adder Multiplier Shifter
Differentiat

or
Register Multiplexer

ODE

solver

55

Page 5

• Hardware implementation of the EMT simulation platform

 Overall hardware architecture

• Dedicated hardware

modules for network,

generator, loads and

control elements

• High speed buses for data

transfer between network

solver and other elements.

• The Matrix-vector

multiplier is the key

component in the

architecture.

Hardware Accelerator Design

66

Page 6

• Design of the Processing Element(PE)

𝑥1 𝑎11

𝑎21

𝑎31

𝑎41

𝑥2 𝑎12

𝑎22

𝑎33

𝑎44

𝑥3 𝑎13

𝑎23

𝑎33

𝑎43

𝑥4 𝑎14

𝑎24

𝑎34

𝑎44

Add
er

tree

Add
er

tree

Add
er

tree

Add
er

tree

𝑦1

𝑦2

𝑦3

𝑦4

 The Processing Element(PE) is responsible for dense matrix-vector multiplication of a small tile

(e.g. 4x4).

 We utilize multiple multipliers to conduct the multiplications simultaneously.

 Results in one row will be summed up through a set of adder tree.

A PE architecture that conduct a 4x4 dense mat-vec (y=Ax)

• Hardware cost:

16 multipliers

12 adders

• Delays: 3 cycles

Hardware Accelerator Design

77

Page 7

• Adaptive matrix multiplier with configurable adder tree

PE1 PE2 PE3 PE4 PE K

⨁ ⨁

⨁

⨁

…
…

Accumulator

• Each PE is responsible for n*n(e.g. 4x4)

dense matvec and produces a vector of

length n

• ⨁ stands for a configurable unit which act

as numerical adder or concatenator

+x1

x2

0⨁

PE K-1…

y

add/concat

Configurable adder tree architecture Configurable adder unit

Hardware Accelerator Design

88

Page 8

• Mapping the matrix to the architecture

𝑏1

𝑏2

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

⋅

 Examples of 2 mat-vec of different shapes mapped to the same architecture

 Stands for concatenator

+ Stands for adder

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

𝑏1

𝑏2

𝑏3

𝑏4

⋅

Hardware Accelerator Design

99

Page 9

• Mapping the matrix to the architecture

 Arrange the PEs to form an array

• Assume the total number of PEs is 2𝑘(k is the number of levels of the tree).

• The possible shape of PE array could be (𝑛 ⋅ 2𝑟, n ⋅ 2𝑐), where r+c=k, n is the PE tile size.

 Shaping strategy of the PE array

𝑛 ⋅ 2𝑟

𝑛 ⋅ 2𝑐

𝑛 ⋅ 2𝑐

𝑛 ⋅ 2𝑟

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

• Case 1 (sufficient amount of

PEs)

Shape the PE array so that it

covers the whole matrix.

• Case 2 (insufficient amount of PEs)

Shape the PE array so that it covers

part of the columns of the matrix. The

whole matrix is covered in multiple

times.

Hardware Accelerator Design

1010

Page 10

• Circuit synthesis results

• Synthesis tool: Synopsys Design Compiler

• Target library: Nangate open cell library (45nm)

• Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (enough to contain 69-bus system)

 Power report

 Area report

Power consumption < 0.08 w

Total area < 0.8 𝑚𝑚2

Circuit Synthesis Results

1111

Page 11

• Circuit performance evaluation

• Based on synthesis result on timing, we can estimate the time needed for the accelerator to

solve the 69-bus system

• Circuit parameters: Number of PEs: 32, PE tile size: 8, Word width: 8 (sufficient to process the

69-bus system)

 Timing report

Running frequency > 500Mhz

 Runtime estimation

• Delay for each mat-vec: log 8 + log 32 + 4 = 12 cycles.

• To solve the linear system we need 4 mat-vec, thus total delay: 4*12=48 cycles.

• Assume running frequency 500 MHz, total runtime would be 48*2 ns = 96 ns.

• Compared to previous software approach (~10 us), hardware accelerator gains around 104

times speedup for the 69-bus system.

Circuit Synthesis Results

1212

Page 12

• Hardware implementation of the EMT simulation platform

Component Design

 Hierarchical structure of the components in the system

EMTP TOP

Load Network Generator
Control

Elements

PIDPLL

Frequency
mean

Low-pass

filter

Park

Transformation

CORDIC

Ele&Mech
Solver

ODE

solver

3-phase

Inverter

Algebraic

functions

Network

Solver

Matrix

multiplier
Task

scheduler

Algebraic

functions

History term
update

Algebraic

functions

Adder Multiplier Shifter
Differentiat

or
Register Multiplexer

ODE

solver

1313

Page 13

• Hardware implementation of the variable frequency mean function

PLL Design -- Variable Frequency Mean Function

 The variable frequency mean function calculate the mean value of the input signal over a

single cycle.

ത𝑉(𝑡) =
1

𝑇
න
𝑡−𝑇

𝑡

𝑉 𝑡 ⋅ 𝑑𝑡

1414

Page 14

• Hardware implementation of the variable frequency mean function

PLL Design -- Variable Frequency Mean Function

 The running mean form can be implemented very efficiently with minimum hardware

requirement.

• 2 multiplier
• 1 adder
• 1 register

1515

Page 15

• Hardware implementation of the low-pass filter

PLL Design -- Low-Pass Filter

 The low-pass filter can remove high-frequency noises thus makes the output frequency

smoother and more robust.

 The general form of the low-pass filter can be expressed as:

𝑓′′ + 2𝜉𝜔𝑛 ⋅ 𝑓
′ + 𝜔𝑛 ⋅ 𝑓 = 𝑓 𝑡

 To facilitate hardware implementation, we rewrite the equation as:

𝑓 =
𝑓(𝑡)

2𝜋
−
𝑓′′

𝜔𝑛
2 −

2𝜉𝑓′

𝜔𝑛
= 𝐴 ⋅ 𝑓(𝑡) − 𝐵 ⋅ 𝑓′ − 𝐶 ⋅ 𝑓′′

Now we only need to calculate the derivative and second-order derivative of f, which can

be easily obtained by the difference between current value and history values.

1616

Page 16

• Hardware implementation of the low-pass filter

PLL Design -- Low-Pass Filter

 The design that maximize hardware reuse
Hardware count

• Multiplier: 1

• Adder: 1

• Differentiator: 1

• Adder: 0 (will use

available adders)

• Shifter: 1

• Register: 2

Timing

• 4 Cycles

• 1 cycle has delay of 1

multiplier

Another option of the same circuit

performs CC3 and CC4 in one

cycle.

• Increases hardware usage

• Decreases #CCs

1717

Conclusions

• ASIC for EMT research is complementary to existing EMT
research.

• The research in this space is currently in early stage but has
tremendous potential for accelerating EMT studies, drawing
inspiration from success stories in other fields.

1818

Questions?

