

Large-Scale EMT Modeling and Analysis: Applications in the Chilean Power Gridus

Dr. Jaime Peralta Coordinador Electrico Nacional (CEN) July 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Coordinador Electrico Nacional – CEN

Independent technical organization responsible for the reliable, secure and economic operation of the Chilean national power grid

MAIN FUNCTIONS:

Administer wholesale energy and AS markets Guarantee a secure and economic operation of the power grid Ensure open access to transmission system Conduct international tenders for new transmission projects Propose a plan for expansions of the transmission system Monitor market competition conditions Manage interconnection process of new G-T-C assets Promote innovation, research and development

Electricity Market in Chile

Facts 2023:

- \checkmark Energy: 83,637 GWh
- ✓ Capacity: 34,321 MW
- \checkmark Peak load: 11,549 MW
- \checkmark VRE (Wind/Solar): 31.1%
- \checkmark VRE Peak: 71.2%
- \checkmark Transmission: 37,353 km

Long-term RE Goals:

- ✓ Carbon Neutrality by 2050
- ✓ Decarbonization before 2040
- $√$ 100% RE by 2030 (85% VRE)

Context

- \checkmark New challenges introduced by massive integration of IBR-based VRE
- \checkmark Reduction of system strength due to decarbonization process
- \checkmark Faster system dynamics and control interactions
- ✓ Brownouts due to unexpected VRE tripping
- Little grid support (capabilities) from existing GFL IBRs
- \checkmark Lack of standards for new enabling technologies (GFM)
- Grid modelling and numerical issues in classic tools

CHALLENGES OF THE GRID OF THE FUTURE

Roadmap for the Energy Transition

- Grid virtualization, planning & operational tools
- Integration of 1000MVAr of synchronous condensers
- ✓ BESS Grid Booster Project (Virtual Transmission)
- \checkmark Real-time ESCR monitoring in control room
- ✓ **EMT (EMTP®) model of SEN (Chilean's power grid)**
- ✓ **EMT Connection Tool (on cloud)**
- ✓ **Advanced monitoring for real-time operation (EMT-DSA)**
- ✓ **Wide-Area Grid-forming EMT Study**
- ✓ **Technical requirements and testing of GFM IBRs (G-PST-NREL-EPRI)**
- ✓ Grid-forming testing in RT Lab & on-site pilot project

Challenges with Existing RMS Tools

- Modeling of MOVs in 500kV series compensation
	- MOVs not modeled SC not bypassed: Numerical instability problems arise in RMS tool due to the large overvoltage
	- MOVs not modeled, SC bypassed: Optimistic (inaccurate) RMS approach
	- MOVs accurately modeled with non-linear curve: Realistic approach
- Incapable to replicate real events (brownouts) in low-strength grid
- Numerical instability with very high levels of VRE
- RMS oversize/overestimate share of GFM requirements vs. EMT (30% vs. 10%)

Advanced EMT Grid Modeling – Approach

- Collaboration agreement with PGSTech (EMTP®)
- First EMTP® model of Bulk Transmission System
	- \checkmark 500 kV and 220 kV systems (3000 km)
	- ✓ +150 generators >20 MW (~100 WPs & PV + ~50 SM)
	- \checkmark ~ 15 FACTS (SVC, SVC Plus and STATCOMS)
	- \checkmark IBR-based VRE share around 50% (now 70%)
	- \checkmark 500 3ph buses, 8000 nodes, 87000 control blocks
- Model validation & calibration

7

MOAK RIDGE **National Laboratory**

- \checkmark Flat start initialization from multiphase load flow
- \checkmark Initially with IBR models from the EMTP® renewable library
- ✓ Validation against RMS tool models (DIgSILENT Power Factory)
- \checkmark Multiple test: step changes (P, Q, V) and faults
- ✓ *IBR_data_fit* tool was used to calibrate control parameters (PSO - Particle Swarm Optimization Algorithm)

Advanced EMT Grid Modeling – Model Validation

DIgSILENT blue, EMTP® in red

SM - GUACOLDA FVP - SOL DEL DESIERTO STATCOM – C. NAVIA

X OAK RIDGE

Advanced EMT Grid Modeling – Computing Performance

EMT Parallelization Test (New EMTP® release)

Simulation Computing Performance

Equivalent to RMS performance

Process & Data Requirements

- Procedure for EMT Model Validation and Homologation
	- \checkmark Use of EMTP® software
	- \checkmark Focus on VRE, BESS, SGs, HVDC, FACTS
	- ✓ Standard (open) and detailed (OEM) models (black-box)
	- ✓ Validate against RMS models, and field and factory tests
	- \checkmark DLL modeling recommended (mandatory in the future)
	- \checkmark Models confidential to protect IP rights
- System data
	- ✓ Transmission parameters available from *Infotecnia* (ISO database)
	- ✓ Operation scenario (load and gen. dispatch) imported from Power Factory database
- Models requested in two stages
	- \checkmark 1st Stage: Standard library model (i.e., WECC for solar and wind)
	- ✓ 2 nd Stage: Detailed (DLL) model from manufacturers (OEM)
	- ✓ Around 40% of models have been delivered

Use Cases: Grid Booster Project

- Objective:
	- \checkmark Increase transmission capacity in the 500 kV corridor by 500MW for 15 mins. (125MWh)
- 2x500 MVA BESS units (1,100 km apart)
- When a fault occurs at any section of the 500 kV line:
	- \checkmark BESS in Parinas absorbs 500 MW & BESS in Lo Aguirre injects 500 MW
	- \checkmark Alleviates the overload in the healthy line until redispatch
- Control System:
	- \checkmark Requires redundant controls & communication systems
	- ✓ Fast communication between Central Control System (CCS) and local control units (PCU)

Use Cases: Grid Booster Project

- **EMTP Model** :
	- ✓ Multiphase load-flow performed in EMTP® for automatic initialization
	- \checkmark EMTP $\overset{\frown}{\mathbb{B}}$ Automated Simulation Toolbox for parallel simulations
	- \checkmark Several grid configurations and parameter setpoints

• **Technical Requirements**

- \checkmark Dynamic reactive compensation at the GB BESS is required (power factor of 0.95)
- \checkmark Ramp rate of 50 MW/s provided FACTS (FRT) settings can be adjusted
- \checkmark If the FRT settings can't be changed, a ramp of 1000 MW/s is needed
- ✓ No BESS short-term overload is required
- \checkmark Stable with 1x100MW module out of service (5 in total)
- \checkmark Capable to work under very low ESCR levels (<1.5)

Steady-State Initialization

Automated Simulation Toolbox

M. Agüero, J. Peralta, E. Quintana, V. Velar, A. Stepanov, H. Ashourian, J. Mahseredjian, R. Cárdenas, "**Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity**", *Journal of Modern Power Systems and Clean Energy*, Mar. 2024.

Use Cases: Grid-Forming BESS Integration

- Objective:
	- Model and assess the dynamic behavior of GFM IBRs in the Chilean grid using EMTP
	- Scenario with 70% of VRE (wind + solar)
- 4x200 MVA GFM BESS units:
	- At locations with low ESCR (<1.5)
	- 3 GFM control method tested (Droop, VSM, dVOC)
	- GFM share 12-15%
- Critical contingencies :
	- Worst N-1 fault condition
	- Islanding of a weak grid
	- Loss of last SG in the island

D. Ramasubramanian, et al., "**A Universal Grid-forming Inverter Model and Simulationbased Characterization Across Timescales**," *56th Hawaii International Conference on System Sciences (HICSS)*, Maui, HI, USA, 2023.

Use Cases: Grid-Forming BESS Integration

1. Base Case: Worst Fault

2. Base Case with SSCC: Worst Fault

3. GFM 4x100MW: Worst Fault

(pu)

 Ω

Use Cases: Grid-Forming BESS Integration

5. Loss of Last SG (GFM)

6. Loss of Last SG (Increased GFM Cap.)

Conclusions:

- GFM can positively impact the dynamic behavior and stability of the grid
- A minimum share of GFM was required (15%) to keep the grid stable under extreme events
- Additional research shall be conducted to assess protection coordination, and blackstart capabilities

J. Peralta, V. Velar, E. Quintana, J. Mahseredjian, H. Gras, H. Ashourian, **"Dynamic Behavior of Grid-forming Inverters in Large-scale Lowstrength Power Grids"**, *IEEE T&D Conference and Exposition, Anaheim, CA*, May 2024.

Advanced EMT Applications

• **SCT-EMTP®: EMT Connection Tool in the cloud**

- \checkmark Detailed EMT model of the SEN for off-line analysis by market participants
- \checkmark Conducting EMT studies by protecting the IP rights of the models
- \checkmark Streamline the model verification during the connection process
- ✓ Perform dynamic performance analysis, verify stability under low system strength conditions, assess impact of large projects (HVDC), etc.

Advanced EMT Applications

• **DSA-EMTP®: EMT Dynamic Security Assessment for the Control Room**

- ✓ Detailed EMT model of the SEN for real-time applications
- \checkmark Expand grid model (1:1 representation)
- ✓ EMT Dynamic Security/Stability Assessment for critical contingencies
- ✓ Optimization with DLL models and parallel computing to achieve "near" real-time simulation
- ✓ Interface with SCADA and PMUs
- ✓ Automatic load-flow initialization from EMS state estimator
- \checkmark Additional module for off-line fault analysis

Grid Model Conversion

- ✓ One-to-one representation of full grid
- ✓ Automatic DB conversion to minimize errors (Python)
- ✓ Initially from Power Factory, in future from SCADA (DSA)
- \checkmark Can be updated periodically
- ✓ Customized library for gens/FACTS/HVDC models (OEMs)

Grid-Forming Requirements & Performance

- ✓ Critical to ensure a reliable operation towards decarbonization
- \checkmark Required for the deployment of the 4-6 GW of BESS by 2030
- \checkmark Develop specs. and requirements for the Chilean Grid Code/Tenders
- ✓ Collaboration with G-PST (NREL/EPRI)

19

XOAK RIDGE National Laboratory

- \checkmark Backed up by wide-area EMT analysis and RT/site tests
- \checkmark Contemplates GFM model development (EMTP library)
- ✓ Validation against two OEM GFM models

Test 1 Test 5 Test 6 Test 7

Model Validation – NERC & AEMO Test framework:

Lessons Learnt & Challenges

- Hard to engage MP to build EMT models (SCT access)
- Lack of standardization for the EMT models (DLLs)
- Automatic initialization (load-flow)
- Automation for data conversion is needed
- Lot of effort in homologation and validation
- Load model (currently constant impendence)
- Parallelization is critical to increase performance
- Balance level of detail (high vs. low frequency phenomena)
- Priority for CEN is system behavior and interactions (AVM vs. DM, DC modeling)

Summary

- Enabling technologies (FACTS/HVDC, BESS, GFM-IBR, GET, SSCC, etc.) are key to accelerate the energy transition.
- Advanced EMT tools are essential to assess the dynamic and transient behavior of (weak) grids dominated by power electronic IBRs.

Next Steps

- SCT deployment with parallel EMTP version
- EMT model improvements (Load model)
- Start DSA-EMT development
- Further research on GFM performance in large grids (EMT)
	- \checkmark Validate GFM against OEM models and test its behavior with 85% VRE
- Technical requirements for GFM technologies (EMT tests)

Thanks for your attention

Dr. Jaime Peralta Coordinador Electrico Nacional (CEN) jaime.peralta@coordinador.cl July 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

