

Large-Scale EMT Modeling and Analysis: Applications in the Chilean Power Grid

Dr. Jaime Peralta Coordinador Electrico Nacional (CEN) July 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Coordinador Electrico Nacional – CEN

Independent technical organization responsible for the reliable, secure and economic operation of the Chilean national power grid

MAIN FUNCTIONS:

Guarantee a secure and economic operation of the power grid Ensure open access to transmission system Administer wholesale energy and AS markets Propose a plan for expansions of the transmission system Conduct international tenders for new transmission projects Manage interconnection process of new G-T-C assets Monitor market competition conditions Promote innovation, research and development

Electricity Market in Chile

Facts 2023:

- ✓ Energy: 83,637 GWh
- ✓ Capacity: 34,321 MW
- ✓ Peak load: 11,549 MW
- ✓ VRE (Wind/Solar): 31.1%
- ✓ VRE Peak: 71.2%
- ✓ Transmission: 37,353 km

Long-term RE Goals:

- ✓ Carbon Neutrality by 2050
- ✓ Decarbonization before 2040
- ✓ 100% RE by 2030 (85% VRE)

CAK RIDGE

Context

- New challenges introduced by massive integration of IBR-based VRE
- Reduction of system strength due to decarbonization process
- ✓ Faster system dynamics and control interactions
- $\checkmark\,$ Brownouts due to unexpected VRE tripping
- Little grid support (capabilities) from existing GFL IBRs
- ✓ Lack of standards for new enabling technologies (GFM)
- ✓ Grid modelling and numerical issues in classic tools

CHALLENGES OF THE GRID OF THE FUTURE

Roadmap for the Energy Transition

- Grid virtualization, planning & operational tools
- ✓ Integration of 1000MVAr of synchronous condensers
- ✓ BESS Grid Booster Project (Virtual Transmission)
- ✓ Real-time ESCR monitoring in control room
- EMT (EMTP®) model of SEN (Chilean's power grid)
- ✓ EMT Connection Tool (on cloud)
- \checkmark Advanced monitoring for real-time operation (EMT-DSA)
- Wide-Area Grid-forming EMT Study
- Technical requirements and testing of GFM IBRs (G-PST-NREL-EPRI)
- ✓ Grid-forming testing in RT Lab & on-site pilot project

Challenges with Existing RMS Tools

- Modeling of MOVs in 500kV series compensation
 - MOVs not modeled SC not bypassed: Numerical instability problems arise in RMS tool due to the large overvoltage
 - MOVs not modeled, SC bypassed: Optimistic (inaccurate) RMS approach
 - MOVs accurately modeled with non-linear curve: Realistic approach
- Incapable to replicate real events (brownouts) in low-strength grid
- Numerical instability with very high levels of VRE
- RMS oversize/overestimate share of GFM requirements vs. EMT (30% vs. 10%)

Advanced EMT Grid Modeling – Approach

- Collaboration agreement with PGSTech (EMTP®)
- First EMTP® model of Bulk Transmission System
 - ✓ 500 kV and 220 kV systems (3000 km)
 - ✓ +150 generators >20 MW (~100 WPs & PV + ~50 SM)
 - ✓ ~ 15 FACTS (SVC, SVC Plus and STATCOMS)
 - ✓ IBR-based VRE share around 50% (now 70%)
 - ✓ 500 3ph buses, 8000 nodes, 87000 control blocks
- Model validation & calibration

CAK RIDGE

- $\checkmark\,$ Flat start initialization from multiphase load flow
- ✓ Initially with IBR models from the EMTP® renewable library
- ✓ Validation against RMS tool models (DIgSILENT Power Factory)
- ✓ Multiple test: step changes (P, Q, V) and faults
- ✓ IBR_data_fit tool was used to calibrate control parameters (PSO - Particle Swarm Optimization Algorithm)

Advanced EMT Grid Modeling – Model Validation

DIgSILENT blue, EMTP® in red

SM - GUACOLDA

If the set of the set of

STATCOM – C. NAVIA

Advanced EMT Grid Modeling – Computing Performance

EMT Parallelization Test (New EMTP® release)

Δt=50 μs, 5 s simulation	Time (s)	Speed-up
Reference case (1 CPU)	620.55	1
Parallel solutions (10 CPUs)	496.13	1.25
Parallel solutions (20 CPUs)	392.73	1.58
Parallel solutions (30 CPUs)	288.22	2.15
Parallel solutions (40 CPUs)	195.87	3.16
Parallel solutions (50 CPUs)	102.14	6.07
Parallel solutions (56 CPUs)	74.4	8.34
Parallel solutions (60 CPUs)	65	9.55

Simulation Computing Performance

Equivalent to RMS performance

Process & Data Requirements

- Procedure for EMT Model Validation and Homologation
 - ✓ Use of EMTP® software
 - ✓ Focus on VRE, BESS, SGs, HVDC, FACTS
 - ✓ Standard (open) and detailed (OEM) models (black-box)
 - $\checkmark\,$ Validate against RMS models, and field and factory tests
 - ✓ DLL modeling recommended (mandatory in the future)
 - ✓ Models confidential to protect IP rights
- System data
 - ✓ Transmission parameters available from Infotecnia (ISO database)
 - ✓ Operation scenario (load and gen. dispatch) imported from Power Factory database
- Models requested in two stages
 - ✓ 1st Stage: Standard library model (i.e., WECC for solar and wind)
 - ✓ 2nd Stage: Detailed (DLL) model from manufacturers (OEM)
 - ✓ Around 40% of models have been delivered

Use Cases: Grid Booster Project

- Objective:
 - ✓ Increase transmission capacity in the 500 kV corridor by 500MW for 15 mins. (125MWh)
- 2x500 MVA BESS units (1,100 km apart)
- When a fault occurs at any section of the 500 kV line:
 - ✓ BESS in Parinas absorbs 500 MW & BESS in Lo Aguirre injects 500 MW
 - $\checkmark\,$ Alleviates the overload in the healthy line until redispatch
- Control System:
 - \checkmark Requires redundant controls & communication systems
 - ✓ Fast communication between Central Control System (CCS) and local control units (PCU)

Use Cases: Grid Booster Project

• EMTP Model :

- ✓ Multiphase load-flow performed in EMTP[®] for automatic initialization
- ✓ EMTP[®] Automated Simulation Toolbox for parallel simulations
- \checkmark Several grid configurations and parameter setpoints

Technical Requirements

- ✓ Dynamic reactive compensation at the GB BESS is required (power factor of 0.95)
- ✓ Ramp rate of 50 MW/s provided FACTS (FRT) settings can be adjusted
- ✓ If the FRT settings can't be changed, a ramp of 1000 MW/s is needed
- \checkmark No BESS short-term overload is required
- ✓ Stable with 1x100MW module out of service (5 in total)
- ✓ Capable to work under very low ESCR levels (<1.5)</p>

Steady-State Initialization

Automated Simulation Toolbox

Name. Type: Parameter. Generator Vary Phase B And C. Enabled and Dependency	fault_01 Ideal switch Include/Exclude Manual	fault, 62 Ideal switch Include/Exclude Manual	fault_63 Ideal switch Include/Exclude Manual	fault_64 Ideal switch Include/Exclude Manual	fault_65 Ideal switch Include/Exclude Manual	fault, 66 Ideal switch Include/Exclude Manual	fault_507 Ideal switch Includie/Exclude Manual	fault_68 Ideal switch Include/Exclude Manual	fault_09 Ideal switch Include/Exclude Manual	fault; f10 Ideal switch Include/Exclude Manual	fault_f11 Ideal switch Include/Esclude Manual	fault, f12 ideal switz include/Excl Manual
• 1	9.1	0 0	0.0	13.0	0.0	0.0	0.0	13.0	0	0.0	0.0	0.0
. 2	0.0	92 T	0.0	0.0	00	0 0	0 0	0.0	0 0	0.0	0.0	0
• 1	0	CI 0	Q. 1	C 0	0.0	0 0	0.	0.0	0	C3 0	0.0	0.0
• 4	0.0	0.0	0.0	2.1	00	0.0	0.0	00	0.0	0.0	0.0	0.0
. 5	0.0	E 0	0.0	0.0	96.1	0.0	0.0	0.0	0 0	C 0	0.0	0 0
• 4	0.0	0.0	0.0	0.0	0.0	¥.1	0.0	0.0	0	0.0	0.0	0.0
• 7	00	0.0	0.0	0.4	010	0.0	¥ 1	0.0	0 0	11.0	0.0	0.0
• 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21	0 0	0.0	0.0	0.0
. 9	CL 0	0.0	0.0	13.0	0.0	0	0	0	¥. 1	0 0	0.0	0
 10 	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	97 T	0.0	0
• 11	0.0	0.0	0.0	0.0	0.0	0 0	00	00	0 0	0 0	£ 1	0 0
• 12	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	81

M. Agüero, J. Peralta, E. Quintana, V. Velar, A. Stepanov, H. Ashourian, J. Mahseredjian, R. Cárdenas, "Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity", Journal of Modern Power Systems and Clean Energy, Mar. 2024.

Use Cases: Grid-Forming BESS Integration

- Objective:
 - Model and assess the dynamic behavior of GFM IBRs in the Chilean grid using EMTP
 - Scenario with 70% of VRE (wind + solar)
- 4x200 MVA GFM BESS units:
 - At locations with low ESCR (<1.5)
 - 3 GFM control method tested (Droop, VSM, dVOC)
 - GFM share 12-15%
- Critical contingencies :
 - Worst N-1 fault condition
 - Islanding of a weak grid
 - Loss of last SG in the island

D. Ramasubramanian, et al., "A Universal Grid-forming Inverter Model and Simulationbased Characterization Across Timescales," 56th Hawaii International Conference on System Sciences (HICSS), Maui, HI, USA, 2023.

Use Cases: Grid-Forming BESS Integration

1. Base Case: Worst Fault

2. Base Case with SSCC: Worst Fault

50

49

48

4

5

Time (s)

6

0. 4

4.5

5

5.5

Time (s)

6

6.5

7

3. GFM 4x100MW: Worst Fault

CAK RIDGE 14 National Laboratory

Use Cases: Grid-Forming BESS Integration

5. Loss of Last SG (GFM)

6. Loss of Last SG (Increased GFM Cap.)

Conclusions:

- GFM can positively impact the dynamic behavior and stability of the grid
- A minimum share of GFM was required (15%) to keep the grid stable under extreme events
- Additional research shall be conducted to assess protection coordination, and blackstart capabilities

J. Peralta, V. Velar, E. Quintana, J. Mahseredijan, H. Gras, H. Ashourian, "Dynamic Behavior of Grid-forming Inverters in Large-scale Lowstrength Power Grids", *IEEE T&D Conference and Exposition, Anaheim, CA*, May 2024.

Advanced EMT Applications

SCT-EMTP®: EMT Connection Tool in the cloud

- ✓ Detailed EMT model of the SEN for off-line analysis by market participants
- ✓ Conducting EMT studies by protecting the IP rights of the models
- \checkmark Streamline the model verification during the connection process
- ✓ Perform dynamic performance analysis, verify stability under low system strength conditions, assess impact of large projects (HVDC), etc.

EmtpWebPortal		lapahol *	Hadden Terrette	Contractor	EmtpWebPortal	🖷 Home 📫 Simulation Jobs *	Español • Usuar	rio£jempto •
No eres miembro todavia? Registrarse filmos di usaris s distole di core Consulta * Recordame Obido az contasator bickas tatión initial Parameters-Values: Grid mode Input Inset		EARDA1		Create simulation jobs	M Setting).			
Parameter	Value	Definition/Comments			Constr			
1 config_id_number	13	provide the id number of the list in Tribal Parameters-Vali						
Initial P	arameters-Values: Text r	mode input Disat			EmtpWebPortal	# Home 📠 Simu	lation Jobs *	Español • UsuarioEjemplo
/* list of allowed configura 1: v1; s1; c1 2; v1; s1; c2 3; v1; s1; c3 4; v1; s2; c1 5; v1; s2; c2	ions (config_id_number; ve	rsion; scenario; contingency);			Simulation Jobs	Cvate My Sim	lation Jobs	Refresh
6; v1; s2; c3 V					File Name	Creation Date	Job Status	Download Result
 Use code from Script.User : 	ttribute 🗌			Standard St. Sciences (1) Contragency (1)	Caso de ejemplo zip	26/6/2024 16:26:03	Completed	District

Advanced EMT Applications

DSA-EMTP®: EMT Dynamic Security Assessment for the Control Room

- ✓ Detailed EMT model of the SEN for real-time applications
- ✓ Expand grid model (1:1 representation)
- ✓ EMT Dynamic Security/Stability Assessment for critical contingencies
- ✓ Optimization with DLL models and parallel computing to achieve "near" real-time simulation
- ✓ Interface with SCADA and PMUs
- ✓ Automatic load-flow initialization from EMS state estimator
- ✓ Additional module for off-line fault analysis

Grid Model Conversion

- \checkmark One-to-one representation of full grid
- \checkmark Automatic DB conversion to minimize errors (Python)
- \checkmark Initially from Power Factory, in future from SCADA (DSA)
- \checkmark Can be updated periodically
- ✓ Customized library for gens/FACTS/HVDC models (OEMs)

Grid-Forming Requirements & Performance

- ✓ Critical to ensure a reliable operation towards decarbonization
- ✓ Required for the deployment of the 4-6 GW of BESS by 2030
- ✓ Develop specs. and requirements for the Chilean Grid Code/Tenders
- ✓ Collaboration with G-PST (NREL/EPRI)
- ✓ Backed up by wide-area EMT analysis and RT/site tests
- ✓ Contemplates GFM model development (EMTP library)
- ✓ Validation against two OEM GFM models

<figure>

Model Validation – NERC & AEMO Test framework:

CAK RIDGE National Laboratory

Lessons Learnt & Challenges

- Hard to engage MP to build EMT models (SCT access)
- Lack of standardization for the EMT models (DLLs)
- Automatic initialization (load-flow)
- Automation for data conversion is needed
- Lot of effort in homologation and validation
- Load model (currently constant impendence)
- Parallelization is critical to increase performance
- Balance level of detail (high vs. low frequency phenomena)
- Priority for CEN is system behavior and interactions (AVM vs. DM, DC modeling)

Summary

- Enabling technologies (FACTS/HVDC, BESS, GFM-IBR, GET, SSCC, etc.) are key to accelerate the energy transition.
- Advanced EMT tools are essential to assess the dynamic and transient behavior of (weak) grids dominated by power electronic IBRs.

Next Steps

- SCT deployment with parallel EMTP version
- EMT model improvements (Load model)
- Start DSA-EMT development
- Further research on GFM performance in large grids (EMT)
 - ✓ Validate GFM against OEM models and test its behavior with 85% VRE
- Technical requirements for GFM technologies (EMT tests)

Thanks for your attention

Dr. Jaime Peralta Coordinador Electrico Nacional (CEN) jaime.peralta@coordinador.cl July 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

