

EMT-TS Hybrid Simulation and Cloud-hosted EMT Simulation

Xiaochuan Luo Manager, Advanced Technology Solutions ISO New England Inc.

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ISO-NE's Advanced Technology Solutions Dept.

• A unique R&D department

- EMT related R&D efforts in the past two years:
 - Automated IBR Model Verification using DFR data and Playback method
 - EMT-TS Hybrid Simulation
 - Prototype EMT simulation on the Cloud

EMT-TS Hybrid Simulation

EMT vs. TS Models – What They Are Good For

ElectroMagnetic (EMT)

- Faster Dynamics (µs)
 - Switching actions
 - Protections
 - Controls with smaller time constants
 - Instant values
- 3-Phase
 - Inverter level
- Higher frequencies
 - SSO (SSR/SSCI/SSTI)
- Smaller Systems

ElectroMechanical (TS)

- Slower Dynamics (ms)
 - Turbine/motor movements
 - Exciter and governor controls
 - RMS values
- Positive sequence
 - Fundamental frequency
- Local/Inter-Area Oscillations, Transient Stability
- Larger Systems

EMT vs. TS Models – Model Characteristics

ElectroMagnetic (EMT)

- One-of-a-kind Models
- New and Not Well Documented
- Black- or Gray-Box Models
- Complex and Still Evolving
- Lacks Testing and Validation Procedures

ElectroMechanical (TS)

- Standard Generic Models
- Well Documented and Understood
- White-Box Models
- Mature
- MOD-26/27/33

EMT-TS Hybrid Simulation

- The best of both worlds
 - IBR (rich area) or HVDC in EMT
 - Rest system in TS

6

ISO-NE's Efforts Investigating EMT-TS Hybrid Simulation

- Part of the ISO-NE's Corporate Scorecard in 2021 and 2022
- Year 1: Proof-of-concept
 - Software platform evaluation
 - SMIB case study
 - Process development
 - Performance testing

- Year 2: Dry Run
 - Hybrid + EMT parallel simulation
 - Each IBR is modeled as an individual case
 - Network in a separate case
 - 3 IBRs and a larger network
 - In-depth evaluation

Hybrid Simulation Case Study – SMIB (wind plant)

- Disturbance: 3-phase fault at 345kV bus A, cleared after 13 cycles with line A-B tripped.
- Features IBR dynamics

CAK RIDGE

Wind Plant String 1 Flow; Wind plant tripped in hybrid sim

Hybrid Simulation Case Study – 3 IBRs with Network 1

- 3 IBRs: two wind plants and one solar plant
- Disturbance: 3-phase fault at 115kV bus A, cleared after 8 cycles
- 1-network EMT only; 1-network hybrid; 3-island hybrid;
- Features grid dynamics

Hybrid Simulation Case Study – 3 IBRs with Network 2

- Topology change: two 345 kV lines out-of-service
- Disturbance: 3-phase fault at 115kV bus B, cleared after 8 cycles with 115kV line B-C tripped
- Features IBR and grid interactions

Conclusions

- EMT-TS Hybrid Simulation for large scale power system is feasible and useful
 - Comparing with building and simulating a really large EMT model
- Hybrid simulation can observe both grid and IBR dynamics
- We have developed an internal process manual and a demonstration case to train engineers on hybrid simulation
- Early stage of adoption in our Operations planning study

Challenges

- Mostly on EMT models
 - Non-standard, one-of-a-kind models
 - Off-the-shelf model is not ready-to-use
 - ISO-NE EMTWG has developed an EMT model management process and a packaging standard (substitution library, parallel library and parallel case, etc.)
 - EMT model testing and tuning
 - Limited automation
- Research needs: EMT-TS boundary determination
 - Need a theoretically sound and systematic approach
 - Plan to evaluate impedance scan tool developed by EPRI and NREL
 - Research on grid model partitioning based on participation factors

Cloud-hosted EMT Simulation

ISO-NE's Cloud-hosted HPC Platform

14

Cloud-hosted EMT Simulation

- In 2021, ISO-NE tested various on-premises hardware configuration for running large-scale EMT simulations
- In 2022, ISO-NE tested PSCAD cloud deployment on AWS
- The objectives of the PoC project include:
 - Design the cloud architecture and deploy E-TRAN and PSCAD on AWS
 - Compare cloud performance vs. on-premises hardware for large scale PSCAD simulation
 - Identify any constraints and limitations on cloud deployment

Cloud Configuration

- Three potential configurations:
 - EC2 instance with RDP connection
 - Full desktop-as-a-Service (DaaS) by using AWS WorkSpaces
 - Application Streaming Service by using AWS AppStream
- Appstream is more suitable to move existing legacy application to AWS; It also offers more choices of instance types characterized by CPU, memory or GPU inside an Amazon Virtual Private Cloud (VPC).

AWS Environment Setup

- Virtual Private Cloud (VPC)
- Etran Licensing Manager
 - On-demand EC2 instance (t2.small) with port 24040 opened
- Appstream Image
 - PSCAD v4.6.3 with Certificate License
 - Microsoft Visual Studio 2010 Express
 - E-Tran Plus for PSCAD
 - Intel Fortran Compiler XE 13 (not installed due to license)
- AppStream Fleet and Stack
 - Instance type

CAK RIDGE

Control user access and permission (Appstream login URL, user name and password)

AWS Environment Setup

• Tested three streaming instance types

Instance type	Instance family	vCPU	Memory (GB)	Hourly price
stream.compute. 4xlarge	Compute optimized	16 Intel Xeon E5-2666	30	\$2
stream.compute. 8xlarge	Compute optimized	32 Intel Xeon E5-2666	60	\$4
stream.memory. z1d.12xlarge	Memory optimized	48 Intel Xeon Platinum 8151	384	\$10.80

- Appstream storage system
 - Default is S3 Bucket; the read/write speed is too slow for PSCAD, throwing an error and then crashing the PSCAD simulation
 - Change to FSx file management system with SSD storage type and 32 MB/s throughput capacity

Performance Comparison

- Results from the cloud instances were compared against internal hardware that had already been tested
- The same testing suite was throughout all testing
- Tested 1, 2, 4, 6, 12 and 24 inverter cases, all of which were parallelized

	Premium Mini- Workstation	HPC Dual CPU Server	8x Large	12x Large		
CPU Model	Intel i7-10700	Intel Xeon Platinum 8176 server	Intel Xeon E5-2666	Intel Xeon Platinum 8151*		
CPU Cores/Threads	8/16	2*28/56	10/20	12/24		
Thermal Design Power (TDP)	65 W	2*165 W	135 W	240 W		
CPU Base/Boost Frequency (GHz)	2.9/4.8	2.1/3.8	2.9/3.5	3/3.7		
* This CPU is custom for AWS and spec numbers may be incorrect						

Performance Comparison (Con't)

■ HPC Server ■ Workstation ■ Cloud 8x ■ Cloud 12x

Benefits of Cloud-hosted EMT Simulation

- Scaling to a higher core count for intensive projects is easy
- User's choice of instance types characterized by CPU, memory or GPU, and can always use the latest hardware
- Only need to update the image with Etran/PSCAD version changes
- Easy to add new users; each user has its own dedicated space without worrying about port conflict like dept. server or onpremises HPC servers

Future Work

- The corporate AWS Foundation Project established Direct Connect with AWS
- We need to re-evaluate the architecture design of the PoC:
 - Choice between Appstream vs. EC2 Instance with RDP
 - Etran and PSCAD license with on-premises license server
 - Storage gateway to bridge PSCAD simulation results
 - Intel Fortran Compiler
- ISO-NE and AWS Strategic Partnership

Questions

