

Leveraging Real-Time EMT Simulation Technology To Accelerate Large-Scale IBR Integration

Aditya Ashok

Director – Energy Systems Research

OPAL-RT Corporation

Electromagnetic Transient Simulation Workshop

August 25, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Introduction/Context

About OPAL-RT Technologies

- Founded in 1997 in Montreal, QC, Canada
- 350+ employees, growing sustainably
- 1000+ customers in all industries around the world
- 20% of annual revenue re-invested in R&D
- 40% academic, 60% industries
- 90% revenue from electrical and power electronics sectors
- Markets
 - HIL, RCP, real-time laboratories
 - ...and fast off-line and on-line close-to-real-time (cloud) simulation
 - for education, R&D and all industries: energy, power electronic, automobile, off-highway vehicle, aerospace, ships, trains ...

Strong International Footprint

International subsidiaries, offices and Excellence Centers:

• USA (Michigan, Colorado), Germany, France (Paris and Lyon), India, China, Brazil, Australia

Distributors:

 China, Australia, Japan, Korea, Singapore, Israel, Ukraine, Kazakhstan, Oman, Pakistan, Qatar, Turkey, United Arab Emirates, Kingdom of Saudi Arabia

Evolution of Real-Time EMT Simulators

Challenges – Historically for EMT simulations

Real-Time EMT Simulation – A Spectrum of Use Cases

Offline EMT Simulation	Accelerated / Parallel EMT Simulation	Real-Time Simulation	Quasi Real-Time or Faster-Than-Real-Rime Simulation
with Generic control models	SIL with real-code controller emulation	CHIL with control system replicas, PHIL with actual DERs	Digital Twins for use in System Operations
 Typical EMT studies Plant-level equipment stress evaluation 	 DER integration studies Interaction studies Planning studies 	 Protection and control design and testing/validation Pre-commissioning tests 	 Transient Security Assessment / Contingency Analysis State Estimation to estimate system states every 5-10 min
	OEM controller	model validation	

SIL – Software in the loop; CHIL – Controller Hardware in the loop

OPAL-RT's Simulation Tools and System Architecture

CAK RIDGE National Laboratory

HYPERSIM - Capabilities for EMT Simulation

CAK RIDGE

Interpolation for accurate simulation of power electronic converters Iterative Solver for non-linearities (transformer saturation, surge arrester, etc.,)

Supported Hardware Platforms and HPC Compatibility

INTEL and AMD MULTICORE CPUs integrated with XILINX FPGAs and I/O systems **Compatible Simulator Standard Simulator** In-House SGI (HP) **Platform from NI Platforms High-Performance Computer Cluster Supercomputer** 100 to 2,000+ Cores HYPERS 085033 DPAL-PT DP5033 On Demand DPAL-RT DPAL-RT 11 1000/10 0P4510 Microsoft Azure **OP4510** Cloud 4 Cores | KINTEX7 FPGA **OP5033XG** 5-Gbits/s **ORCHESTRA** 8 to 64 Cores Co-simulation **HITACHI Server NI PXI FPGA OP5707XG** 2-socket 128-Cores Compatible with OPAL-8 to 16 Cores | INTEL Scalable Gold CPU | VITEX 7 FPGA **RT's FPGA-baser Power**

Scalability of hardware based on system size being simulated

Electronics Toolbox (eHS)

CAK RIDGE

National Laboratory

Setting up Large-Scale EMT Simulation in HYPERSIM

Network Model Conversion/Import

(Automation through Unified Database and API)

OEM Controller Code Integration

(3 different approaches)

Model Quality Validation

(Different types of tests)

Simulation Studies & Post-Processing

(Scripted execution through API, Scope View for results)

CAK RIDGE National Laboratory

Setting up Large-Scale EMT Simulation in HYPERSIM

Network Model Conversion/Import

(Automation through Unified Database and API)

OEM Controller Code Integration

(3 different approaches)

Model Quality Validation

(Different types of tests)

Simulation Studies & Post-Processing

Post-Processing

(Scripted execution through API, Scope View for results)

Unified Database for Automated Model Conversion

PSCAD Import into HYPERSIM

PSSE Import into HYPERSIM

- Machines and controllers are grouped into subsystems
- GPS coordinates can be used to place the components

Comparison of Load Flow Errors

OPAL-RT TECHNOLOGIES

PSS®E Import IEEE 118-Bus System

This benhmark model is automatically import from PSS®E reference model.

HYPERSIM® Real-Time Power System Simulator

This example is a copyright of OPAL-RT TECHNOLOGIES Inc.

PowerFactory Import into HYPERSIM

Setting up Large-Scale EMT Simulation in HYPERSIM

Network Model Conversion/Import

Automation through Unitie Database and API)

OEM Controller Code Integration

(3 different approaches)

Model Quality Validation

(Different types of tests)

Simulation Studies & Post-Processing

(Scripted execution through

OEM Controller Code Integration with EMT Model

16

Generalized Conceptual View of Plant-level Model with different functional blocks

OEM Controller Code Integration in HYPERSIM

<u>Approach 1</u>: Automatic import of controller block (manufacturer code) from PSCAD to HYPERSIM

HYPERSIM

- The generated HYPERSIM block has the same I/Os and parameters as in PSCAD.
- Automated open-loop validation

PSCAD Controller

National Laboratory

Status of OPAL-RT's product development

- Automation has been tested with success with controller codes from 6 different manufacturers
- Open for collaboration on projects
- Beta version available upon request

OEM Controller Code Integration in HYPERSIM

<u>Approach 2</u>: Automatic import of controller code developed according to standards/industry guidelines*

- Seamless integration
- The controller codes can be executed in real-time, and distributed on parallel processors or on a separate simulator

***Source:** Joint IEEE TASS-TF and CIGRE WG B4.82 (Use of real code in EMT models for power system analysis) IEC 61400-27-1 Wind Energy Generation Systems - Part 27-1: Electrical Simulation Models - Generic Models

OEM Controller Code Integration in HYPERSIM

<u>Approach 3</u>: With HYPERSIM Linux Real-Time Container for HIL simulation of Windows-based controller code DLLs

- Can reuse the same Windows 64/32-bit DLLs
- No need to recompile the controller code in Linux

Setting up Large-Scale EMT Simulation in HYPERSIM

Network Model Conversion/Import

Automation through Unitie Database and API)

OEM Controller Code Integration

(3 different approaches)

Model Quality Validation

(Different types of tests)

Simulation Studies & Post-Processing

(Scripted execution through API, Scope View for results)

Model Quality Validation for Detailed Plant Models

• Validation tests (based on applicable grid codes or standards such as IEEE 2800) are essential before integration plant models with the rest of the network

– Flat run

- Three phase-Ground, Line-Ground, Line-Line-Ground faults
- Over-voltage, Under-voltage tests
- Over-frequency, Under-frequency tests
- Fault ride through tests with different dip size (fault impedance)
- Change power setpoints, energy input level
- Tests repeated for different Short Circuit Ratios

Setting up Large-Scale EMT Simulation in HYPERSIM

Network Model Conversion/Import

Automation through Unitie Database and API)

OEM Controller Code Integration

(3 different approaches)

Model Quality Validation

(Different types of tests)

Simulation Studies & Post-Processing

(Scripted execution through API, Scope View for results)

Simulation Studies & Post-Processing

Python API

import os

import sys
sys.path.append(r'C:\OPAL-RT\HYPERSIM\hypersim-version\Windows\HyApi\python')
Replace hypersim-version by the version you want to test

import HyWorksApiGRPC as HyWorksApi
import time

HyWorksApi.startAndConnectHypersim()

This script finds the model next to it, when we launch python from the same directory designPath = os.path.join(os.getcwd(), 'HVAC_735kV_38Bus.ecf') HyWorksApi.openDesign(designPath)

HyWorksApi.setPreference('simulation.calculationStep', '50e-6')
calcStep = HyWorksApi.getPreference('simulation.calculationStep')

print('calcStep = ' + calcStep)

print('code directory : ' + HyWorksApi.getPreference('simulation.codeDirectory'))

print('mode : ' + HyWorksApi.getPreference('simulation.architecture'))

HyWorksApi.mapTask()
HyWorksApi.genCode()
HyWorksApi.startLoadFlow()
HyWorksApi.startSim()
print('startSim done')

volt = HyWorksApi.getComponentParameter('Ge7', 'baseVolt')
print(('baseVolt = ' + volt[0] + volt[1]))

HyWorksApi.setComponentParameter('Ge7', 'baseVolt', str(float(volt[0]) + 2.75))

volt2 = HyWorksApi.getComponentParameter('Ge7', 'baseVolt')

print(('baseVolt = ' + volt2[0] + volt2[1]))

if(abs(float(volt2[0]) - float(volt[0]) - 2.75) > 0.0001):
 print('SET_COMP ERROR')
else:
 int('set_comp encode)

print('SET_COMP SUCCESS')

time.sleep(5)

HyWorksApi.stopSim() HyWorksApi.closeDesign(designPath) HyWorksApi.closeHyperWorks()

Test View for Automation

23 **CAK RIDGE** National Laboratory

Simulation Studies & Post-Processing

4000-bus and 300+ Blackbox Controller EMT Benchmark

- 30s simulation in 90s wall clock time, 500-core Windows server
 - 50 us time step for the main grid
 - 10us or 16.67us for manufacturer controller codes
- 1x High Performance 128-coreWindows Computer4

22 x High-Performance 4-GHz 18-core Computers High-speed links between computer

MODEL BENCHMARK Approximate number of components (3-phase)	
Buses (3-phase)	4,000
Lines, loads, switched shunts reactors	6,700
Transformers and synchronous machines	2,000
Inverter-based generation plants	150
Controllers using real-code (precompiled DLLs)	300+
FACTS and HVDC converters	70
Protection relay models	100

- About 100 cores for the 4000-bus system
- **300 cores for the** controller codes

4000-bus EMT benchmark – System Architecture

Hydro-Quebec 735 kV Transmission System Model

- Hydro-Quebec 2023 grid: 56 cores, 40us in real-time
- 8 x 8 cores modules Xeon Scalable Gold 6144 @ 3.5GHz, 24.75 MB L3 Cache) in an HPE SuperDome Flex

Complex components	Quantity	
Three-phase buses	1 666	
Electrical machines	111	
Lines and cables	432	
Three-phase transformers	338	
Governors	86	
Excitation systems	81	
Stabilizers	54	
Static compensators	10	
Wind power plants	6	
HVDC converters	6	
Dynamic loads	165	

SIMULATION TIME FOR A 15 Second EVENT

Nbre of CPU	Measured Tstep (s)	Theoretical Tstep with 100% efficiency (s)	Actual efficiency
1	2565		
4	786	641	82%
56	15	46	305%

27 **CAK RIDGE** National Laboratory

CEPRI – China Large Transmission System Model 500kV+

8500 3-phase nodes
350 generators
1300 sources
4500 transmission lines
10 HVDC links connected to replicas
1200 3-ph breakers
800 switches
1500 dynamic loads
5700 RLC
200 filters
900 transformers
37000 control components

- 300+ cores, 50 us
- 2 SUPERDOM FLEX (HP) OF 300 cores each (600 cores in total) are now used interfaced with more than 70 OP5607 FPGAbased IO systems and simulators

Distribution Grid Benchmark with 8190 1-ph nodes

• 22 CPU Cores, 100 us time-step

CAK RIDGE

National Laboratory

29

• Compilation time: 98s only, standard INTEL 32-core computer

Demonstration

• Working on a combination of hands-on (laptop) + demo video

- Show an example of PSCAD plant model + PowerFactory import to HYPERSIM
- Show results from a video of simulation from 4000-bus benchmark.

Gaps & Challenges Observed

Automated Model Development/Import using Unified Database

- Extending support for more components in existing formats
- Moving towards CIM-based model import

Model quality verification

- Availability of field test data
- Automating various types of model quality tests
- Validation Criteria
 - Aggregate vs. Detailed Plant-level IBR models

• Numerical algorithm innovation for solvers on FPGAs

- Detailed Plant-level IBR models at very low time-steps

Gaps & Challenges Observed

OEM controller code Integration

- Standardizing OEM controller code IO for creating wrappers
- Interoperability across tools and platforms
- Model validation for OEM controllers like synchronous machine
- Code optimization to work efficiently with EMT simulations
- Initialization of OEM controller code

EMT-Phasor co-simulation

- Developing screening criteria for when EMT-Phasor simulation can be used
- Interfacing approaches between EMT and Phasor
- Identifying the right location for partitioning between EMT and Phasor

Questions?

Thank You!

