

High Fidelity Modeling of Large-scale PV plant (IBR) for EMT Simulations

Suman Debnath Jongchan Choi

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Context: Energy System Transition

Future US energy system and power grid (real-world system) transition to a PEdominated system

- 22,000 generators,
- 55,000 substations,
- 160,000 miles of high-voltage power lines, and
- Millions of miles of low-voltage power lines and distribution transformers

Conventional power grid

Power plants

Context: Energy System Transition

Future US energy system and power grid (real-world system) transition to a PEdominated system

- 22,000 generators,
- 55,000 substations,
- 160,000 miles of high-voltage power lines, and
- Millions of miles of low-voltage power lines and distribution transformers

CAK RIDGE

Context: Simulation Requirements Identified

Needs Identified by NERC: 1. EMT simulations as more power electronics is integrated 2. Higher fidelity models of connected devices in power grid needed

Existing TS models are insufficient for modeling disturbances with power electronics

Simulation Needs: Gaps & Challenges

Suman Debnath et. al. "High Penetration Power Electronics Grid: Modeling and Simulation Gap Analysis", ORNL Technical Report

Ongoing Research

Models: IBRs

- Suite of High-Fidelity EMT Time-Domain Models of Large-Scale PEs (SHIFT-PE)
 - Offline (Fortran, C, C++)
 - Hardware-based (RSCAD, Opal-RT, Multi-Core DSP, GPU)

Applications:

- Reliability analysis: IBRs
- Planning: HVdc
- Event replications

Simulation Tools: EMT

- New numerical and parallelization techniques evaluated
- Simulate higher fidelity of models and larger systems in EMT
- New computing architectures

IBR – Inverter-Based Resources HVdc – High-Voltage Direct Current DSP – Digital Signal Processing GPU – Graphics Processing Unit

Models: <u>Suite of High-Fidelity EMT Time-Domain Models of</u> Large-Scale PEs (SHIFT-PE)

Capability: Fast simulation of high-fidelity dynamic models of large-scale PEs and PE-grids (towards packaged capability) Approach: Advanced numerical simulation algorithms that enable speed-up and maintain accuracy Usage: For designers and planners to study future power grids (and for post-mortem analysis)

Library of high-fidelity dynamic models of large-scale PE systems with advanced simulation algorithms with up to 17,000x speed-up observed

Library of PE component models (basic building block of PE systems)

CAK RIDGE National Laboratory

boratory Suman Debnath, Phani Marthi, Jongchan Choi, "Applied Mathematics Challenge: Simulation of Power Electronics in Future Power Grid", SIGSIM-PADS 2022 invited paper

Application: Event Description – 2018 Angeles Forest Fire

Courtesy: Google maps and NERC*

Courtesy: NERC*

Reliability Challenge: In the order of nearly 900 MW of PV power generation lost.

<u>Transient AC overvoltage</u> observed at inverter terminals within PV plants during the disturbance (but not at the POI of the plant)! <u>Partial power reduction</u> observed from most PV plants during the disturbance!

Challenges with Existing Models

Courtesy: Google maps and NERC*

Courtesy: NERC*

- Requirement
 - Improved modeling and simulation requirements identified to replicate events (post-event analysis, planning, design).
- Challenges
 - Aggregated model (can't replicate the partial tripping of PV plants).
 - High-fidelity model (**time consuming** due to EMT nature and large number of components).

Approach: High-Fidelity Switched System Model

High-Fidelity EMT Dynamic Model of PV Plant:

Specific PV plant-1 (One of the affected PV plants during Angeles Forest fire event)

High-Fidelity Models

- Hundreds-thousands of inverters
- Non-linear non-autonomous hybrid switchedsystem models
- Hundreds of distribution transformers
- Many distribution lines
- Represent partial momentary cessation and shutdown (or during ride-through)

Challenges

Time consuming nature of running these simulations in traditional simulators using library models (e.g., very long time to run 0.1 s in a large PV plant model)

Solution

 Use advanced numerical simulation algorithms to speed-up simulations**

**J. Choi and S. Debnath, "Electromagnetic Transient (EMT) Simulation Algorithm for Evaluation of Photovoltaic (PV) Generation Systems," 2021 IEEE Kansas Power and Energy Conference (KPEC), 2021, pp. 1-6.

Approach: Advanced Numerical Simulation Algorithms on High-Fidelity Models

Spatial parallelism

DAE – Differential Algebraic Equations

Approach: EMT Simulation of PV Plant

- High-fidelity model in PSCAD development process
 - Specific PV plant-1 with *hundreds* of PV, inverters, inverter controllers, transformers, filters, lines

CAK RIDGE

High-Fidelity Switched System Model Simulations: Test Results from EMT Simulator/Fortran

Feeders in collector system

High-Fidelity EMT Dynamic Model of PV Plant:

Specific PV plant-1 (One of the affected PV plants during Angeles Forest fire event)

> 95% accuracy observed (with events like capacitor switching), up to 320x faster

EMT Grid-PV Plant Model Simulations: Test Results from EMT Simulator/Fortran

Hardware-based EMT Simulation – Software (RSCAD)

Simulated modelsPlotsCustom modelingin Draftin Runtimein CBulider

- Software for Real-Time Digital Simulator (RTDS)
 - Draft
 - Runtime
 - CBuilder
 - Cable, T-line
- Custom modeling
 - Utilized to apply the numerical algorithms for the high-fidelity modeling in RSCAD.

CAK RIDGE

Hardware-based EMT Simulation – Software (RSCAD)

- Specific RSCAD C language for custom component modeling
 - Different from standard C language. _
 - 3 Sections _
 - STATIC
 - RAM
 - CODE
 - Needs _
 - Optimized for hardware-based EMT simulation.
 - Understanding of three sections in the specific C in RSCAD.
 - Knowledge of EMT modeling/simulation.

Hardware-based EMT Simulation – Hardware (RTDS)

Racks

• Up to 60 Racks can be connected.

Processor Card

 up to 6 cards per Rack

Cores

• 2 cores per Card

Hardware structure of RTDS

Maximum capability – 60 Racks, 360 Cards, 720 Cores!

Challenges in Hardware-based EMT Simulation

• Numerical instability in a single rack

Multi-racks implementation is required for large-scale EMT simulation!

Challenges in Hardware-based EMT Simulation

• Numerical instability in multi-racks

Smaller simulation timestep is required with multi-rack implementation!

Techniques for Hardware-based EMT Simulation

Proposed techniques

- Pseudo real-time implementation with optimizing simulation time-step.
 - $T_{sim} = 0.25 \ \mu s$ with $T_{sol} = 100 \ \mu s$.
- C script partitioning in multiple cores.
 - PV systems, feeders.
- Equivalencing techniques at boundaries of partitioning.
 - Inductors between feeders and collector bus.

Hardware-based EMT Simulation in RTDS/RSCAD

• A PV Plant with the power grid

- 8 racks (PV plant) + 1 rack (Power grid) - 9 racks in total, pseudo real-time

Validation of Hardware-based EMT Simulation Model

Voltages and currents for the inverter going through the fault within the PV plant

Voltages and currents for tripped inverter within the PV plant

Lessons Learnt (if any)

- High-fidelity IBR modeling is required.
- Sensitive and accurate data for both the grid and IBR is required for accurate EMT simulations.
- Knowledge of both software and hardware are required for hardware-based EMT simulation for large-scale systems.
- Understanding of the limitations of software/hardware for EMT simulation optimization.

Impact

- Assist with post-event analysis
- Help in design and testing of protection systems
- More renewable energy integration
- Accurate reliability study for IBR for risk assessment and mitigation
- Help in power system planning with IBR

Gaps & Challenges Observed (Not Solved Yet)

- Scalability of EMT simulation needs to be addressed for largescale EMT simulation.
- Parallel computing capability needs to be applied for largescale EMT simulation.
- EMT simulation capability needs to be extended for large-scale DERs dominated-distribution grid (by short lines).

